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Within the framework of the mechanics of heterophase systems a mathematical model for the process of press-
ing of wood has been offered; this model takes account of the influence of its complex rheological properties
and surface phenomena in thin interlayers of water on the change in a porous structure. With numerical
methods, a study has been made of the influence of the sample’s humidity and temperature fields on the
strength and quality of the material obtained.

Introduction. An important problem in creating modified wood is technological regulation of the conditions
of its formation. The methods developed to improve the physical and mechanical properties of natural wood of less
valuable types are based on the use of such technological operations as heating, pressing, drying, cooling, and impreg-
nation with various compositions. Wood is a natural composite with a complex irregular structure. It belongs to unsta-
ble biopolymer systems whose rheological characteristics are substantially determined by temperature and humidity
conditions, which complicates investigation of the behavior of wood when it is modified.

In this work, we study the stressed-strained state of wood during the pressing at different temperatures. The
purpose of the investigation is an analysis of the influence of the temperature of wood samples with different distribu-
tions of humidity and porosity on the degree of pressing, the uniformity of compaction, and the strength of the billets.

Mathematical Model. Mathematical modeling of the process of straining of wood has been conducted within
the framework of the mechanics of heterogeneous media [1]. Wood is considered as a three-phase system containing a
solid phase (wood substance), a liquid, and a vapor-gas mixture. The method of averaging over individual phases
makes it possible to take account of the influence of surface forces in thin capillaries of wood cells’ walls on the
change in the structural parameters of a porous system.

The total stress tensor in the wood material σkl is represented as the sum of the averaged stresses in the
phases

σkl
 = α1 sσ1

′
kl

t1 + α2 sσ2
′
kl

t2 + α3 sσ3
′
kl

t3 ,   sσi
′
kl

ti = 
1

dV
  ∫ 
dVi

σi
′
kl

 d ′V . (1)

It is assumed that the stress tensors in the liquid and gaseous phases are spherical:
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To describe the rheological behavior of wood, a rheological equation [2] is used as a generalization of a
rheological model of a medium with dual porosity [3]. Its peculiarity is that, along with the parameters of the viscoe-
lastic behavior of the structural skeleton of wood and the material of the cell walls, it obviously contains the charac-
teristics of the wood structure, such as the volume content of large pores, capillaries, water, and a wood substance:
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Here mp is the porosity determined by the ratio of the volume of macropores to the volume of the material and αci
and αpi (i = 1, 2) are the volume contents of the ith phase in the volume of capillaries and pores, respectively.

The physical properties of water contained in wood are complex, since water here is not only in a free state
but also in a bound state characterized by a changed molecular structure near solid surfaces [4]. Bound water can be
found in wetting films and in thin interlayers. The pressure p2 averaged over the volume of the liquid phase depends
on the values of the volume content and the pressure for free and bound water in wetting films and thin pores. Bound
water in thin interlayers creates a disjoining pressure, which makes the main contribution to the value of p2. For thin
interlayers it can be represented as the sum P + ∆p2(α2, Iσ, T). Here P is determined either using isotherms or using
theoretical approaches, for example, [5]; ∆p2 depends on the intensity of loading of the porous material [6].

The parameters of the rheological model and the components of the disjoining pressure as applied to pine
wood were obtained by treatment of the creep curves in compression in the principal directions of anisotropy at dif-
ferent temperatures [7, 8] and by processing of the experimental data on swelling and shrinkage [9]. Figure 1 illus-
trates the obtained dependence of ∆p2 on temperature and humidity. The creep kernels were represented in the form
of exponents:

Kn
ijkl

 (t) = dn
ijkl

 exp (− t ⁄ λn
ijkl) ,   n = s, f .

The compaction of wood takes place in a special mold with rigid walls [10]. In the case of pressing across
the fibers, the mold has open end surfaces. The degree of pressing across the fibers can reach 50%; the strains along
the fibers are negligibly small.

Let us choose a coordinate system as shown in Fig. 2. We assume that the size of the long side of the sam-
ple many times exceeds its transverse dimensions, and the distribution of load in the zone of contact between the press
and the sample along the x3 axis is practically uniform. This makes it possible to consider that we have implemented
a state of plane strain or unilateral compression for samples with inhomogeneous or homogeneous structural charac-
teristics respectively. It is heated wood that is usually subject to straining. The temperature field in the volume of the
billet is nonuniform in the general case. The temperature of the medium’s particles is considered to be constant, which
is correct, since the characteristic time of heat transfer in the solid and liquid phases of wood is substantially longer
than the time of the process of pressing.

The process of straining can be considered as quasiequilibrium, so the equilibrium equations [1]

Fig. 1. Component of disjoining pressure ∆p2 vs. humidity w and temperature
T for Iσ = −20 MPa. ∆p2, MPa; w, %; T, K.

Fig. 2. Scheme of pressing.
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are correct.
Setting the strains to be small and taking the density of the wood substance to be constant, we can obtain the

relation
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from the equation of conservation of the solid-phase mass.
Due to the change in the volume of the billet, the change in the volume content of the liquid phase is taken

account of using a relation similar to (4). If the sample has a humidity lower than the hygroscopic saturation point of
the cell walls, the water in it is found either in thin interlayers or in wetting films. The transfer of moisture in this
case is only possible in wetting films from a region with a higher saturation to a less saturated region. We can deter-
mine the pressure gradient in wetting films, following [11]. Evaluations show that the contribution of capillary return
flows of moisture to the change in the liquid-phase concentration field in the process of pressing of the capillary-po-
rous system studied is insignificant, since the time of pressing is much shorter than the characteristic time of transfer
of water in the cross section of the bar. In the case of compaction of wood of high humidity in the direction across
fibers there may occur displacement of free water predominantly along the fibers through end surfaces. In calculations,
account is taken of the reduction of the mass of water in a wet wood sample with neglect of the resistance to dis-
placement.

The forces of friction between the composite being formed and the walls of the mold and also the die are
disregarded. The condition of contact interaction of the upper bound of the sample with the lower surface of a rigid
die represents an equality of the normal components of the displacement vector over the entire contact surface:
sh3
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 ′)t3 = Y(t), Y < 0. The other boundary conditions of the problem have the form
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Normal stresses in the contact zone satisfy the condition

 ∫ 
0

b

 ∫ 
0

c

σ11
dx1dx3 = F . (6)

Numerical Investigation. The boundary-value problem posed (1)–(6) is nonlinear even for materials with a
uniform distribution of humidity and porosity, since we do not know in advance the position of the lower bound of
the die at each instant of time and the level of stresses depends on the volume content of the phases. To carry out
a computational experiment aimed at studying a stressed-strained state in a wood sample with a varying porous
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structure, finite-difference equations have been constructed and an iteration algorithm has been developed for their
implementation.

It is evaluation of its strength that is an important element of the analysis of the process of straining of a
wood billet. The polynomial criterion of the 4th degree suggested by E. K. Ashkenazi [12] was selected as a strength
criterion. It showed itself to advantage for highly anisotropic materials, which include, in particular, softwood. The cri-
terion does not provide inversion of tensile and compressive strength, but the use of a piecewise limiting strength sur-
face makes it possible to take account of this feature of the material. For the three-axial stressed state with selection
of the coordinate axes in the direction of the principal axes of anisotropy the strength condition has the form [12]
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It is well known that the values of the ultimate strength decrease with growth in the humidity and temperature but in-
crease with degree of pressing [7, 9]. It is assumed that the character of the influence of these factors of humidity and
temperature is the same for the limiting values of stresses in any tests: σtj = σtj(T, w) = σtj(293, 12)f(T, w) (j = a, r,
t, etc.); σtj(293, 12) is the value of a corresponding ultimate strength at a temperature of 20oC and a wood humidity
of 12%. The function f interpolates experimental data for the ultimate strength along the fibers in the range of values
w = 0–30% and T = 273–373 K given in [9]. The change in the value of ultimate strengths as a function of the de-
gree of pressing is taken account of using the relation σtj = σtj(1 − kεjY ⁄ a), where kεj is the coefficient dependent on
the type of wood, the plane of pressing, and the type of strain [7].

The calculations were carried out for pine wood for the following values of the rheological parameters:
Πs

tt(0) = 0.12⋅10−10 Pa−1, Πs
rt(0) = −0.46⋅10−11 Pa−1, Πs

aa(0) = 0.57⋅10−12 Pa−1, Πs
ta(0) = −0.23⋅10−12 Pa−1, Πs

ra(0) =
−0.28⋅10−12 Pa−1, Πf

rr(0) = 0.49⋅10−8 Pa−1, Πf
tt(0) = 0.734⋅10−8 Pa−1, Πf

rt(0) = −0.182⋅10−9 Pa−1, Πf
aa(0) = 0.95⋅10−10

Pa−1, Πf
ta(0) = −0.11⋅10−10 Pa−1, Πf

ra(0) = −0.13⋅10−10 Pa−1, Ss
rt(0) = 0.29⋅10−10 Pa−1, Sf

rt(0) = 10−8 Pa−1, df
kl = 0.02

sec−1, k and l = r, t and a; ηs
rt = ds

rr, df
rr = 0.11 sec−1, df

tt = 0.13 sec−1, df
aa = 0.0053 sec−1, df

rt = df
ra = df

rr, ηf
rt =

df
rr, λs

kl = 1.241⋅105 sec, k and l = r, t, and a, and ϑs
rt  = λs

rr, λf
rr = 41.9 sec, λf

tt = 37.5 sec, λf
aa = 150.0 sec, λf

ta =
λf

ra = λf
rt = 52.5 sec, and ϑf

rt  = λf
rr. Here S(0), η, and ϑ are the instantaneous compliance, the influence-function

amplitude, and the relaxation time in shear strains. The data given in [9] (pchar = 102 MPa, ρ2 = 103 kg/m3, and ρ3
= 1.54⋅103 kg/m3) are used as the ultimate-strength values for pine wood. It is assumed that the quantity 1 − mp − α3
(volume content of capillaries in the material) is approximately equal to the volume content of moisture under condi-
tions of hygroscopic saturation of wood cell walls at a given temperature. The forces of resistance to filtration trans-
fer are disregarded.

The pine-wood sample’s cross section initially has a square shape, i.e., a = b and c/a = 5. The initial distri-
bution of the volume content in the general case is nonuniform across the cross section and is assigned in the form
α20 = A20 + B20 sin (πx1

 ⁄ a) sin (πx2/b). Since wood has the properties of a colloid body and swells in the saturation
of cell walls with water, at a humidity lower than the hygroscopic saturation limit, a nonuniform content of the liquid
phase also corresponds to a nonuniform distribution of the solid phase in the material. The distribution of humidity
across the sample’s cross section is assigned in the range of 12–20% (A20 = 0.054 and B20 = 0.032) and 19–10%
(A20 = 0.083 and B20 = −0.04). The first number in the notation of the range refers to the boundaries, and the second
refers to the center of the billet’s cross section. Thus, in the first case it is the central zone that is more humid,
whereas in the second case it is the boundary zone. In drier regions, the material has a higher concentration of the
solid phase. It is assumed that loading is carried out instantaneously with an applied constant force F = F0 (average
pressure F0/bc = 20 MPa). The sample’s temperature is assigned either as the same at all points of the cross section
or similarly to α20.
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Figures 3–6 present the results of calculations, illustrating the influence of the rheological and temperature-hu-
midity factors on the parameters of the process of pressing of wood. Due to the viscoelastic properties possessed by
the solid phase and the structural skeleton of the material, the maximum degree of compaction is attained within a pe-
riod of time that is close to the relaxation time λf

rt (Fig. 3a). The instantaneous elastic strain in the direction of com-
pression amounts to less than 50% of the strain established after completion of the process of creep. The maximum
degree of pressing is attained at higher values of the sample’s temperature and humidity, which is due to the smaller
contribution of disjoining pressure on the total value of the material’s resistance to compression. Curves 7–10 in Fig.
3 are calculated for samples having a nonuniform distribution of humidity or temperature. In the central zone the ma-
terial is more (less) humid or more (less) heated than in the boundary regions. The average-over-the cross section
value of the humidity corresponds to 15%, and that of the temperature corresponds to 60oC. As is seen from Fig. 3a,
the degree of pressing for billets with selected nonuniform regions of humidity or temperature differs only slightly
from this value obtained on condition that there is a uniform distribution of regions (w = 15% and T = 60oC). The
calculation of the material-strength surface conducted for these conditions shows that a nonuniform distribution of hu-
midity and temperature leads to the appearance of destruction regions. In the case of uniform temperature and humid-
ity of the material (for example, for w = 20%, T = 60oC and w = 15%, T = 100oC), the destruction occurs due to

Fig. 3. Time change in the position of the die’s lower bound Y (a), the volume
content of the solid phase α3 (b), and the density of the material ρ (at the cen-
ter of the sample’s cross section) (c) in pressing of pine wood across the fibers
in the radial direction; 1–3, 7, and 8) samples with temperature T = 60oC; 4
and 6) 100oC; 5) 20oC; the temperature field of samples 9 and 10 varies in the
range 65–51oC and 55–68oC respectively. The wood humidity is w = 10% (1);
15% (2, 5, 6, 9, and 10); 20% (3 and 4); the humidity distribution of samples
7 and 8 is assigned in the interval w = 12–20% and 19–10%, respectively.
F/bc = 10 MPa. Y, m; ρ, kg/m3; t, sec.

Fig. 4. Time change in the volume content of the solid phase α3 (a) and the
density of the material ρ (b) in pressing of pine wood in the radial direction
at the sample’s cross-sectional points indicated on the diagram; the humidity
distribution is in the range w = 12–20%; the temperature is uniform, T =
60oC. F/bc = 20 MPa. ρ, kg/m3; t, sec.
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the reduction in the strength characteristics of wood, when the humidity and the temperature increase. If the degree of
pressing turns out to be sufficiently high, the E. K. Ashkenazi strength criterion, despite the high humidity and tem-
perature (w = 20% and T = 100oC), points out the possibility of obtaining a high-quality sample of compacted wood,
which is confirmed by results obtained in practice [7]. The appearance of zones of partial destruction is determined not
only by the temperature-humidity step-down correction to the values of strength indicators but also by the complex
stressed state of the material. The location of these zones corresponds to regions of maximum concentration of the
solid phase, the highest level of volume-compression strain, the maximum tangential stresses, and the total compressive
stresses in the direction of the principal axes of wood anisotropy.

In analyzing the results of calculations of the process of pressing of wood, it is necessary to pay attention not
only to the density of the material but also to the volume content of the solid phase. Due to the insignificant differ-
ence in the values of the density of the solid and liquid phases (ρ3

 ⁄ ρ2 C 1.54), a higher density of pressed material
does not always correspond to a higher content of the solid phase (see the mutual position of curves 1 and 2–5 in Fig.
3b and c). In the case of nonuniform humidity or temperature fields as, for example, for w = 12–20% and T = 60oC,
at different points of the cross section, there is no complete correspondence between the values of the density and the
volume content of the solid state (Fig. 4) either.

Fig. 5. Distribution of the volume content of the solid phase α3 in the sam-
ple’s cross section in radial pressing of pine wood with a uniform temperature
distribution (T = 60oC) and a nonuniform humidity field: w = 12–20% (a–c);
19–10% (a′–c′) at t = 0 sec (a and a′); 20 sec (b and b′); 80 sec (c and c′).
F/bc = 20 MPa.
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Redistribution of the solid state in the sample’s cross section is due to the features of the rheological behavior
of wood at different values of temperature and humidity. The sample that is more humid in the central zone does not
have the highest concentration of the solid phase (Fig. 5a–c) at the center. Despite the sufficiently large strain of the
wood in this region, the excessively friable initial state of the structural skeleton does not allow the attainment of a
greater degree of compaction here. Due to this, the region of maximum pressing is formed in intermediary zones (Fig.
5b and c). As is seen from Fig. 5a′–c′, the sample is characterized by a higher concentration of the solid phase in
these zones after compaction as a result of the more intense straining.

An analysis of the results of the calculations of nonuniformly heated samples (with a uniform initial content
of moisture and the solid phase) shows that the qualitative character of distribution of the volume phase in the process
of pressing remains constant (Fig. 6). The sample heated inside more than outside turns out, in accordance with the E.
K. Ashkenazi criterion, to be stronger than a sample having an opposite temperature distribution.

Calculations show that the negative influence of a nonuniform humidity distribution of wood can be compen-
sated for with a specially selected temperature field.

Conclusions. The formulated mathematical model of the process of pressing of wood takes account of the
rheological factor and the effect of disjoining pressure in thin interlayers of water on the change in the material’s po-
rous structure in its compaction. Numerical calculations make it possible to predict the degree of pressing and the
change in the porous structure over the sample’s cross section. Determination of the stress-tensor field makes it possi-
ble to use the strength criterion for evaluation of the regime selected for pressing of the prepared samples with an as-
signed distribution of temperature and humidity.

NOTATION

s...ti, averaging over the volume of the ith phase; a, b, and c, dimensions of a sample, m; ap, characteristic
dimension of pores, m; A20 and B20, constant; d, parameter of the influence function, sec−1; F, resultant compressive
force, N; h, displacement, m; Iσ, first invariant of the stress tensor, Pa; kεj, coefficient; mp, volume content of large
pores; p, pressure, Pa; P, equivalent disjoining pressure in thin interlayers of water, Pa; ∆p2, nonequilibrium compo-

Fig. 6. Distribution of the volume content of the solid phase α3 in the sam-
ple’s cross section in radial pressing of pine wood with a uniform humidity
distribution, w = 15%, and a nonuniform temperature field: T = 65–51oC (a
and b); 55–68oC (a′ and b′) at t = 30 sec (a and a′); 90 sec (b and b′). F/bc
= 20 MPa.
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nent of disjoining pressure, Pa; R13 and R23, forces of resistance to the filtration transfer of the liquid and gaseous
phases in a porous material, N; t, times, sec; t ′, time preceding the observation time t, sec; T, temperature, K; V, vol-
ume, m3; dV, macrovolume element, m3; w, humidity, %; x1, x2, and x3, Cartesian coordinates, m; Y, displacement of
the die, m; α, volume content; δ, unit tensor; ε, strain tensor; K, tensor of the creep-rate functions; λ, parameter of
the influence function, sec; Λ, tensor of the temperature expansion coefficients, K−1; Π(0), instantaneous-compliance
tensor, Pa−1; Θ, difference between the running temperature and a certain initial value of it, K; ρ, density, kg/m3; σ,
stress tensor, Pa; τ, shear components of the stress tensor, Pa. Subscripts: 1, 2, and 3, vapor, water, and a wood sub-
stance (solid phase); i and j, phase No.; f, effective (fictitious) values; s, wood substance; p, system of macropores; c,
system of capillaries; 0, initial values, char, characteristic value of the parameter; t, hazardous stress (ultimate strength–
time resistance); a, r, and t, directions of the principal axes of symmetry of an orthotropic material. Superscripts: i, j,
k, and l, tensor components; ′, parameters average within the microvolume d ′V << ap

3; 45, ultimate strength in the di-
rection at an angle of 45o to the anisotropy axes of the material.
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